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Abstract 

 

Adaptive design optimization algorithms use Bayesian statistics and machine learning to identify 

the experimental designs (e.g., stimulus properties and combinations, testing schedule, rewards, 

etc.) that maximize the expected information gain, leading to rapid accumulation of information 

with the fewest number of trials. To the best of our knowledge, however, none of the existing 

algorithm are cost-aware, in the sense that none of them consider the possibility that different 

designs and results may have different associated cost. Here we introduce a new cost-aware 

algorithm to dynamically choose questions and minimize costs in behavioral experiments. We also 

present ground true simulations showing the drastic reduction in cost that can be achieved when 

studying hackers’ behavior. Importantly, in all cases the decision about what design to use took 

milliseconds or a few seconds in a conventional desktop computer, which makes the algorithm 

suitable for on the fly design optimization even when running online massive experiments. 

 

Introduction 

Adaptive Design Optimization (ADO) is a Bayesian optimal design procedures that ensure 

optimal efficiency in data collection and in the integrity of inference about the phenomenon 

of interest [Cavagnaro, 2009; Wang, 2010; Myung, 2013]. It takes into account previous 

results to update priors believes and estimate the design parameters (e.g., stimulus 

properties and combinations, testing schedule, rewards, etc.) that maximize the expected 

information gain in the next trials in order to achieve the experimental objective with the 

fewest numbers of observations possible.  

 

Different versions have been developed and successfully applied since the early 1990s, 

for instance, in visual psychophysics [Gu, 2016; Hou, 2016], or in a classical behavioral 

economics experiment, the delayed discount task [Ahn, 2020] (see [Ryan, 2016] for a 

review on Bayesian design optimization), but its adoption have been slow, in part because 

of the nontrivial technical skills required to implement them [Yang, 2020] and, in part, 

because of its limitations since the existing algorithms are time-consuming and are only 

practical if trying to infer among a limited set of parametric models [Myung, 2013; Chang, 

2021].  

 

With the explosion of massive online experiments [Hartshorne, 2019; Almaatouq, 2021; 

Zimmerman, 2016; Rieznik, 2017] it is foreseeable that the implementation of ADO for on 

the fly design optimization will exponentially increase. Since many of these online 

experiments measure complex behaviors, they lack a proper expected parametrized 

model and an ADO approach would only be practical if it is data-driven and nonparametric, 

i.e., if it is able to optimally select designs independently of the functional form of the data-



generating model. To the best of our knowledge there is only one article proposing a 

nonparametric ADO algorithm: a recent article by Chang et al [Chang, 2021]. Also, at the 

BitTrap Attacker Behavior Analysis (ABA) Labs we already developed and implemented 

our own new nonparametric ADO algorithm, and wrote an article introducing it that is 

currently under revision in a scientific journal. 

 

With this advances, ADO implementations will soon be ubiquitous. And one question will 

naturally arise, a question that, to the best of our knowledge, has not yet been answered in 

the scientific literature: how can we take into account that not all measures have the same 

cost? When different measures have different costs, what should be optimized at each trial 

is no longer the information gain but the information gain per unit cost. In this article we 

present an algorithm to do exactly that, and that can be easily applied using current ADO 

implementations with few modifications to the algorithms.  

 

A cost-aware ADO framework 

The goal of any ADO implementation is to discovery, with the fewest possible trials, which 

of a set of 𝑀 models is the one that best represent the reality, i.e., the one that is the true 

data-generating model. Suppose 𝑚 = {1, 2, . . , 𝑀} is one of a set of 𝑀 models being 

considered, 𝑑 is a design, and 𝑦 is the outcome of an experiment with design 𝑑 under 

model 𝑚. Traditional ADO formulations select optimal designs by maximizing the expected 

information gain [Cavagnaro, 2009; Wang, 2010; Myung, 2013]. If a measure is done at 𝑑 

with result 𝑦, the information gain is given according to the Kullback–Leibler divergence by 
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Note that 𝑝(𝑚|𝑦, 𝑑) is the posterior probability of model 𝑚, while 𝑝(𝑚) is its prior. So, the 

expected information gain is given by the sum of the information gains that would be 

obtained if the result of a measure 𝑦 is weighed by the marginal probability for 𝑦: 
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The design maximizing this equation is selected in traditional ADO formulations. Now, 

suppose each result 𝑦 of a measure has an associated cost. Let’s call this cost 𝐶𝑦,𝑑. The 

subscripts 𝑦 and 𝑑 inidicate that the cost may depend on both the trial result and design. 

Now, we can add this information in the first sum of equation (2) in order to maximize the 

expected information gain per unit cost: 
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The design maximizing this new equation will then maximize the expected information gain 

per unit cost. In the next section we present ground true simulations showing the 

advantage of using this algorithm when compared against a classical ADO algorithm or a 

random strategy: the same amount of information can be obtained but at a much lower 

cost. 

Results 

Suppose we want to know the probability that successful a hacker [succesfully] 

compromising a computer will accept a given amount of money in order to end the attack 

and reveal their position. In other words, we want to know the shape of the curve P 

(acceptance probability) vs. U$S (offered money). In order to measure this curve we can 

offer different money amounts when attacks occur, and measure the proportion of times 

the offer is accepted. Suppose that, given our knowledge about the word, ours believes 

about the possible shapes of this curve are represented by the head map shown in Figure 

1a. Suppose now that the shape of the true curve is given by the dotted blue curve in 

Figure 1b, which shows that, for instance, over 50% of the hackers will accept USD250 to 

reveal their position and nearly 100% will do it for USD2000. The question we ask is how 

much money we need to spend in order to modified our believes in such a way that after 

some measures (i.e., after some money offering and results of acceptance or rejection) 

our posterior believes are represented by the head map in Figure 1b, and so are much 

closer to the true generating model (blue points) than our priors (Figure 1a). The heat map 

in Figure 1b is obtained after an information gain of 50% relative to the initial uncertainty 

(measured as entropy through the well-known Shannon formula). 

 

Figure 1: (a) Heat map representing our prior believe about the probability of acceptance as a function of 

the offered money. (b) Heat map and (background) and true generating data curve (dotted blue) when the 

uncertainty is halved, i.e., when the information gained equals 50% of the initial uncertainty. 

In order to study this question we perform ground true simulations: we simulate a 

population of hacker that behave according to the ground true curve shown in blue in 

Figure 1b and observe how many trials would be needed to achieve convergence towards 

the heat map shown in Figure 1b if our prior beliefs are given by the heat map shown in 



Figure 1a. When running the experiment we study three strategies: choosing randomly 

among different money amounts; choosing the amounts that optimizes the expected 

information gain using equation (2), where 𝑑, the experimental design to be chosen, is the 

amount of offered money; and choosing the amounts that optimizes the expected 

information gain per unit cost using equation (3). After each trial, we update our beliefs 

(represented as heat maps as done in Figure 1) using the well-known Bayes formula, and 

chose a new design (amount) for the next trial. How much it cost in each case to obtain an 

information gain of 50% relative to the initial uncertainty? In Figure 2 we plot the results of 

the simulations.  

 

Figure 2 Information gain vs. cost using, using the prior shown in Figure 1a and the ground true shown in 

blue in Figure 1b, for three different strategies: a conventional ADO strategy, a cost-aware ADO, and 

choosing randomly among the different offered amounts. 

It is clear that the cost-aware strategy converges much faster towards the true generating 

model, at a much faster rate per unit cost. We stress that in all cases the decision about 

what design to use, i.e., how much money to offer in the next trial, took milliseconds or a 

few seconds in a conventional desktop computer, which makes this algorithm suitable for 

on the fly design optimization even when running online massive experiments. 

Conclusion 

We introduced a new algorithm to dynamically choose questions and minimize costs in 

behavioral experiments. We performed ground true simulations studying a specific case in 

which different designs and results have different costs, showing that the implementation 

of our algorithm can drastically reduce the cost of the experiment. With the explosion of 

massive online experiments, we forecast a rapid growing adoption of cost-aware ADO 

strategies in behavioral science.  
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